Integrasi Artificial Intelligence dalam Manajemen Modern: Peluang, Tantangan, dan Dampaknya di Era Transformasi Digital
DOI:
https://doi.org/10.65310/rr425c59Abstrak
Penelitian ini mengkaji integrasi teknologi cerdas dalam praktik manajemen modern dan menyoroti bagaimana transformasi digital mengubah struktur organisasi dan proses pengambilan keputusan. Melalui pendekatan deskriptif-kualitatif yang didukung oleh sintesis tematik dari publikasi ilmiah terkemuka, laporan internasional, dan temuan empiris dari tahun 2020 hingga 2025, penelitian ini mengidentifikasi peluang utama, tantangan, dan implikasi manajerial yang muncul dari adopsi sistem berbasis data canggih. Temuan menunjukkan bahwa otomatisasi cerdas meningkatkan akurasi manajerial, efisiensi operasional, dan responsivitas strategis dengan memfasilitasi pemrosesan informasi organisasi secara real-time. Namun, implementasi yang sukses sangat bergantung pada kesiapan karyawan, tata kelola yang terstruktur, dan kemampuan pemimpin untuk mengembangkan kompetensi analitis yang kuat. Studi ini juga mencatat bahwa ketergantungan pada sistem prediktif memerlukan evaluasi berkelanjutan untuk meminimalkan bias dan memastikan hasil pengambilan keputusan yang inklusif. Bukti empiris dari dataset global lebih lanjut menunjukkan adopsi yang semakin luas dari alat pengambilan keputusan otomatis di berbagai fungsi manajerial. Secara keseluruhan, penelitian ini menyimpulkan bahwa organisasi yang mampu menyelaraskan kemampuan teknologi dengan strategi manajemen adaptif akan memperkuat keunggulan kompetitif mereka dan meningkatkan kinerja jangka panjang dalam era transformasi digital.
Unduhan
Referensi
Ali, I., Warraich, N. F., & Butt, K. (2025). Acceptance and use of artificial intelligence and AI-based applications in education: A meta-analysis and future direction. Information Development, 41(3), 859–874. https://doi.org/10.1177/02666669241257206
Alsheibani, S., Messom, C., & Cheung, Y. (2020). Re-thinking the competitive landscape of artificial intelligence. Dipresentasikan pada Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2020.718
Chang, C., Jen, H., & Su, W. (2022). Trends in artificial intelligence in nursing: Impacts on nursing management. Journal of Nursing Management, 30(8), 3644–3653. https://doi.org/10.1111/jonm.13770
Dabbous, A., Aoun Barakat, K., & Merhej Sayegh, M. (2022). Enabling organizational use of artificial intelligence: An employee perspective. Journal of Asia Business Studies, 16(2), 245–266. https://doi.org/10.1108/JABS-09-2020-0372
Damioli, G., Van Roy, V., & Vertesy, D. (2021). The impact of artificial intelligence on labor productivity. Eurasian Business Review, 11(1), 1–25. https://doi.org/10.1007/s40821-020-00172-8
Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., … Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599
El Hajj, M., & Hammoud, J. (2023). Unveiling the influence of artificial intelligence and machine learning on financial markets: A comprehensive analysis of AI applications in trading, risk management, and financial operations. Journal of Risk and Financial Management, 16(10), 434. https://doi.org/10.3390/jrfm16100434
Fanelli, S., Pratici, L., Salvatore, F. P., Donelli, C. C., & Zangrandi, A. (2023). Big data analysis for decision-making processes: Challenges and opportunities for the management of health-care organizations. Management Research Review, 46(3), 369–389. https://doi.org/10.1108/MRR-09-2021-0648
Flak, O. (2024). Online managerial tools as research tools to apply artificial management: Results of research. International Conference on AI Research, 4(1), 115–125. https://doi.org/10.34190/icair.4.1.3190
Foroughi, B., Naghmeh-Abbaspour, B., Wen, J., Ghobakhloo, M., Al-Emran, M., & Al-Sharafi, M. A. (2025). Determinants of generative AI in promoting green purchasing behavior: A hybrid partial least squares–artificial neural network approach. Business Strategy and the Environment, 34(4), 4072–4094. https://doi.org/10.1002/bse.4186
Gong, Q., Fan, D., & Bartram, T. (2025). Integrating artificial intelligence and human resource management: A review and future research agenda. The International Journal of Human Resource Management, 36(1), 103–141. https://doi.org/10.1080/09585192.2024.2440065
Grandinetti, R. (2020). How artificial intelligence can change the core of marketing theory. Innovative Marketing, 16(2), 91–103. https://doi.org/10.21511/im.16(2).2020.08
Harfizar, Wicaksono, M. W., Hakim, M. B., Wijaya, F. H., Saleh, T., & Sana, E. (2024). Analyzing the influence of artificial intelligence on digital innovation: A SmartPLS approach. IAIC Transactions on Sustainable Digital Innovation, 5(2), 108–116. https://doi.org/10.34306/itsdi.v5i2.659
Hassan, D. O., & Hassan, B. A. (2025). A comprehensive systematic review of machine learning in the retail industry: Classifications, limitations, opportunities, and challenges. Neural Computing and Applications, 37(4), 2035–2070. https://doi.org/10.1007/s00521-024-10869-w
Impact of artificial intelligence (AI) enabled management information system (MIS) in managerial decision making: An empirical study of leading business organisation. (2024). Journal of Informatics Education and Research. https://doi.org/10.52783/jier.v4i2.919
Jin, B. E., & Shin, D. C. (2021). The power of 4th industrial revolution in the fashion industry: What, why, and how has the industry changed? Fashion and Textiles, 8(1), 31. https://doi.org/10.1186/s40691-021-00259-4
Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z., … Goel, S. (2020). Racial disparities in automated speech recognition. Proceedings of the National Academy of Sciences, 117(14), 7684–7689. https://doi.org/10.1073/pnas.1915768117
Li, Z. (2024). The impact of artificial intelligence technology innovation on economic development—From the perspective of generative AI products. Journal of Education, Humanities and Social Sciences, 27, 565–574. https://doi.org/10.54097/8eb1ks76
Lim, W. M. (2025). What is qualitative research? An overview and guidelines. Australasian Marketing Journal, 33(2), 199–229. https://doi.org/10.1177/14413582241264619
Mendy, J., Jain, A., & Thomas, A. (2024). Artificial intelligence in the workplace: Challenges, opportunities and HRM framework. Journal of Managerial Psychology. https://doi.org/10.1108/JMP-05-2024-0388
Na, K. (2024). The role of artificial intelligence in China’s manufacturing industry: Reality and prospects. Highlights in Business, Economics and Management, 39, 252–258. https://doi.org/10.54097/p62r3m68
Osadcha, K. P., & Shumeiko, N. V. (2024). Artificial intelligence, the labor market, and education for sustainable development: The points of intersection. IOP Conference Series: Earth and Environmental Science, 1415(1), 012015. https://doi.org/10.1088/1755-1315/1415/1/012015
Prasetya, F., Fortuna, A., Samala, A. D., Latifa, D. K., Andriani, W., Gusti, U. A., … Cabanillas García, J. L. (2025). Harnessing artificial intelligence to revolutionize vocational education: Emerging trends, challenges, and contributions to SDGs 2030. Social Sciences & Humanities Open, 11, 101401. https://doi.org/10.1016/j.ssaho.2025.101401
Rane, N. L., Desai, P., & Choudhary, S. (2024). Challenges of implementing artificial intelligence for smart and sustainable industry: Technological, economic, and regulatory barriers. Dalam N. L. Rane (Ed.), Artificial intelligence and industry in Society 5.0. Deep Science Publishing. https://doi.org/10.70593/978-81-981271-1-2_5
Secundo, G., Spilotro, C., Gast, J., & Corvello, V. (2025). The transformative power of artificial intelligence within innovation ecosystems: A review and a conceptual framework. Review of Managerial Science, 19(9), 2697–2728. https://doi.org/10.1007/s11846-024-00828-z
Tenakwah, E. S., & Watson, C. (2025). Embracing the AI/automation age: Preparing your workforce for humans and machines working together. Strategy & Leadership, 53(1), 32–48. https://doi.org/10.1108/SL-05-2024-0040
Thakur, J., & Kushwaha, B. P. (2024). Artificial intelligence in marketing research and future research directions: Science mapping and research clustering using bibliometric analysis. Global Business and Organizational Excellence, 43(3), 139–155. https://doi.org/10.1002/joe.22233
Theoharidis, A. F., Guillén, D. A., & Lopes, H. (2023). Deep learning models for inflation forecasting. Applied Stochastic Models in Business and Industry, 39(3), 447–470. https://doi.org/10.1002/asmb.2757
Tu, T., Schaekermann, M., Palepu, A., Saab, K., Freyberg, J., Tanno, R., … Natarajan, V. (2025). Towards conversational diagnostic artificial intelligence. Nature, 642(8067), 442–450. https://doi.org/10.1038/s41586-025-08866-7
Uddin, M. K. S., & Hossan, K. M. R. (2024). A review of implementing AI-powered data warehouse solutions to optimize big data management and utilization. Academic Journal on Business Administration, Innovation & Sustainability, 4(3), 66–78. https://doi.org/10.69593/ajbais.v4i3.92
Vuković, D. B., Dekpo-Adza, S., & Matović, S. (2025). AI integration in financial services: A systematic review of trends and regulatory challenges. Humanities and Social Sciences Communications, 12(1), 562. https://doi.org/10.1057/s41599-025-04850-8
Wang, X. (2023). Research on the realization path of inclusive employment structure under the application of artificial intelligence. Socio Economy and Policy Studies, 3(2), 124–127. https://doi.org/10.26480/seps.02.2023.124.127
Yang, Y., Zhang, Y., Sun, D., He, W., & Wei, Y. (2025). Navigating the landscape of AI literacy education: Insights from a decade of research.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Mohammad Abdul Aziz Alwahedi, Durrin Ni’am, Mohammad Firmansyah (Author)

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.










