Long-Term Variability of Tropical Crop Productivity in Southeast Asia: A Multi-Source Analysis Using FAOSTAT, WorldClim, and MODIS Time-Series Data

Authors

  • Deo Renaldi Saputra Universitas Negeri Semarang Author
  • Sunusi Dauda Bayero University Kano Author

Keywords:

Tropical Crop Productivity, Southeast Asia, Multi-Source Data, Climate Variability, MODIS Time-Series.

Abstract

This study investigates the long-term variability of tropical crop productivity across Southeast Asia by integrating multi-source datasets from FAOSTAT production records, WorldClim climatic variables, and MODIS vegetation time-series. The analysis captures multi-decadal fluctuations in rainfall, temperature, and vegetation dynamics that influence yield performance under intensifying hydroclimatic stress across diverse agroecosystems. The results show that crop production is shaped by interacting drivers such as recurrent drought, rising surface temperatures, land-management pressures, and soil degradation processes that alter canopy vigor and phenological stability. Spatial patterns reveal that regions exposed to persistent water deficits, peatland subsidence, and vegetation stress exhibit stronger declines in productivity, while areas with improved soil amendments and adaptive cultivation strategies maintain more stable year-to-year yield trajectories. The combined evidence highlights the importance of continuous monitoring, early-warning systems, and region-specific management interventions to safeguard food security as environmental conditions shift rapidly. This study contributes a comprehensive assessment of long-term agricultural variability using harmonized climate, production, and remote-sensing datasets and provides a basis for strengthening regional resilience across the Southeast Asian tropical crop sector.

Downloads

Download data is not yet available.

References

Appelt, J. L., Saphangthong, T., Malek, Ž., Verburg, P. H., & van Vliet, J. (2023). Climate change impacts on tree crop suitability in Southeast Asia. Regional Environmental Change, 23(3), 117. https://doi.org/10.1007/s10113-023-02111-5.

Banerjee, A., Ariz, D., Turyasingura, B., Pathak, S., Sajjad, W., Yadav, N., & Kirsten, K. L. (2024). Long-term climate change and anthropogenic activities together with regional water resources and agricultural productivity in Uganda using Google Earth Engine. Physics and Chemistry of the Earth, Parts A/B/C, 134, 103545. https://doi.org/10.1016/j.pce.2024.103545.

Bethuel, C., Arvor, D., Corpetti, T., Hélie, J., Descals, A., Gaveau, D., ... & Corgne, S. (2025). Applying the Dempster–Shafer fusion theory to combine independent land-use maps: A case study on the mapping of oil palm plantations in sumatra, Indonesia. Remote Sensing, 17(2), 234. https://doi.org/10.3390/rs17020234.

Chen, F., Man, W., Wang, S., Esper, J., Meko, D., Büntgen, U., ... & Chen, F. (2023). Southeast Asian ecological dependency on Tibetan Plateau streamflow over the last millennium. Nature Geoscience, 16(12), 1151-1158. https://doi.org/10.1038/s41561-023-01320-1.

Doan, T. T., Sisouvanh, P., Sengkhrua, T., Sritumboon, S., Rumpel, C., Jouquet, P., & Bottinelli, N. (2021). Site-specific effects of organic amendments on parameters of tropical agricultural soil and yield: A field experiment in three countries in Southeast Asia. Agronomy, 11(2), 348. https://doi.org/10.3390/agronomy11020348.

Evans, C. D., Irawan, D., Suardiwerianto, Y., Kurnianto, S., Deshmukh, C., Asyhari, A., ... & Williamson, J. (2022). Long-term trajectory and temporal dynamics of tropical peat subsidence in relation to plantation management and climate. Geoderma, 428, 116100. https://doi.org/10.1016/j.geoderma.2022.116100.

Frazier, A. G., Yen, B. T., Stuecker, M. F., Nelson, K. M., Sander, B. O., Kantar, M. B., & Wang, D. R. (2022). Impact of historical climate variability on rice production in Mainland Southeast Asia across multiple scales. Anthropocene, 40, 100353. https://doi.org/10.1016/j.ancene.2022.100353.

Ha, T. V., Uereyen, S., & Kuenzer, C. (2023). Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. International Journal of Applied Earth Observation and Geoinformation, 121, 103378. https://doi.org/10.1016/j.jag.2023.103378.

Hollósy, Z., Ma’ruf, M. I., & Bacsi, Z. (2023). Technological advancements and the changing face of crop yield stability in Asia. Economies, 11(12), 297. https://doi.org/10.3390/economies11120297.

Jovani‐Sancho, A. J., O'Reilly, P., Anshari, G., Chong, X. Y., Crout, N., Evans, C. D., ... & Sjögersten, S. (2023). CH4 and N2O emissions from smallholder agricultural systems on tropical peatlands in Southeast Asia. Global Change Biology, 29(15), 4279-4297. https://doi.org/10.1111/gcb.16747.

Lin, H. I., Yu, Y. Y., Wen, F. I., & Liu, P. T. (2022). Status of food security in East and Southeast Asia and challenges of climate change. Climate, 10(3), 40. https://doi.org/10.3390/cli10030040.

Mainuddin, M., Peña-Arancibia, J. L., Karim, F., Hasan, M. M., Mojid, M. A., & Kirby, J. M. (2022). Long-term spatio-temporal variability and trends in rainfall and temperature extremes and their potential risk to rice production in Bangladesh. PLoS Climate, 1(3), e0000009. https://doi.org/10.1371/journal.pclm.0000009.

Oakley, J. L., & Bicknell, J. E. (2022). The impacts of tropical agriculture on biodiversity: A meta‐analysis. Journal of Applied Ecology, 59(12), 3072-3082. https://doi.org/10.1111/1365-2664.14303.

Page, S., Mishra, S., Agus, F., Anshari, G., Dargie, G., Evers, S., ... & Evans, C. D. (2022). Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 3(7), 426-443. https://doi.org/10.1038/s43017-022-00289-6.

Quintus, S., & Allen, M. S. (2024). Niche construction and long-term trajectories of food production. Journal of Archaeological Research, 32(2), 209-261. https://doi.org/10.1007/s10814-023-09187-x.

Rizzo, G., Agus, F., Susanti, Z., Buresh, R., Cassman, K. G., Dobermann, A., ... & Grassini, P. (2024). Potassium limits productivity in intensive cereal cropping systems in Southeast Asia. Nature Food, 5(11), 929-938. https://doi.org/10.1038/s43016-024-01065-z.

Rodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., ... & Tor‐ngern, P. (2021). Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecology and Evolution, 11(21), 15430-15443. https://doi.org/10.1002/ece3.8248.

Santos, P. A. D., Adami, M., Picoli, M. C. A., Prudente, V. H. R., Esquerdo, J. C. D. M., Queiroz, G. R. D., ... & Chaves, M. E. D. (2025). Land use and land cover products for agricultural mapping applications in Brazil: Challenges and limitations. Remote Sensing, 17(13), 2324. https://doi.org/10.3390/rs17132324.

Struebig, M. J., Lee, J. S., Deere, N. J., Gevaña, D. T., Ingram, D. J., Lwin, N., ... & Davies, Z. G. (2025). Drivers and solutions to Southeast Asia’s biodiversity crisis. Nature Reviews Biodiversity, 1(8), 497-514. https://doi.org/10.1038/s44358-025-00064-7.

Wang, X., Fu, T. M., Zhang, L., Lu, X., Liu, X., Amnuaylojaroen, T., ... & Yang, X. (2022). Rapidly changing emissions drove substantial surface and tropospheric ozone increases over Southeast Asia. Geophysical Research Letters, 49(19), e2022GL100223. https://doi.org/10.1029/2022GL100223.

Yuan, S., Stuart, A. M., Laborte, A. G., Rattalino Edreira, J. I., Dobermann, A., Kien, L. V. N., ... & Grassini, P. (2022). Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nature Food, 3(3), 217-226. https://doi.org/10.1038/s43016-022-00477-z.

Zaki, M. K., & Noda, K. (2022). A systematic review of drought indices in tropical Southeast Asia. Atmosphere, 13(5), 833. https://doi.org/10.3390/atmos13050833.

Downloads

Published

2025-12-05

How to Cite

Long-Term Variability of Tropical Crop Productivity in Southeast Asia: A Multi-Source Analysis Using FAOSTAT, WorldClim, and MODIS Time-Series Data. (2025). Journal of Nature, Plants, and Animals Studies, 1(2), 19-26. https://scriptaintelektual.com/vivaterra/article/view/222