Aplikasi Google Colab Berbasis Python dalam Menerapkan Teori Pohon dengan Algoritma Random Forest Classifier
DOI:
https://doi.org/10.65310/ybbpgv52Kata Kunci:
Random Forest, Tree Theory, Machine Learning, Google Colab, Income ClassificationAbstrak
This study examines the application of Python-based Google Colab in implementing tree theory through the Random Forest Classifier algorithm for income classification in data science, artificial intelligence, and machine learning professions. The research adopts an experimental quantitative approach using secondary data sourced from a global employment dataset. The methodological process includes data preprocessing, feature selection, class balancing, model training, and performance evaluation within the Google Colab environment. The results demonstrate that Random Forest effectively represents tree theory through ensemble decision structures capable of handling complex and heterogeneous data. Model evaluation indicates a satisfactory level of accuracy, confirming the classifier’s ability to generalize patterns across different income categories. Feature importance analysis reveals that job title, experience level, and company location play a significant role in determining income classification. These findings highlight the relevance of Random Forest as both a predictive and interpretative model, while emphasizing Google Colab’s effectiveness as a computational platform for machine learning experimentation. Overall, the study contributes to the practical understanding of tree-based algorithms and their application in analyzing labor market dynamics within the digital economy.
Unduhan
Referensi
Amanda, W., & Voutama, A. (2025). Klasifikasi pendapatan menggunakan algoritma random forest: Studi kasus dataset adult income. Jurnal Ilmiah Informatika Global, 16(2), 79–84.
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi kemungkinan diabetes pada tahap awal menggunakan algoritma klasifikasi random forest. Sistemasi, 10(1), 163–172. https://doi.org/10.32520/stmsi.v10i1.1129
Arayadiba, A. H., Nurnawati, E. K., Rahmawati, N., & Setiawan, I. (2025). Prediksi Tingkat Risiko Keterlambatan Pengiriman Barang Menggunakan Algoritma Decision Tree. Jurnal SCRIPT, 13(01), 51-57. https://doi.org/10.34151/script.v13i01.5289
Bintang, R. A. K. N., & Romadloni, N. T. (2025). Perbandingan Kinerja Algoritma Klasifikasi Pada Review Pengguna Aplikasi Netflix. Jurnal Informatika dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6303
Daqiqil, I. (2021). Machine learning: Teori, studi kasus, dan implementasi menggunakan Python. UR Press. https://books.google.co.id/books?id=JvBPEAAAQBAJ
Faisti, M. J., Kusumodestoni, R. H., & Wibowo, G. W. N. (2025). Mental health classification using naïve Bayes and random forest algorithms. Journal of Applied Informatics and Computing, 9(4), 1740–1750. https://doi.org/10.30871/jaic.v9i4.10144
Fauzi, A., & Yunial, A. H. (2022). Optimasi algoritma klasifikasi Naive Bayes, decision tree, K-nearest neighbor, dan random forest menggunakan particle swarm optimization pada diabetes dataset. Jurnal Edukasi dan Penelitian Informatika, 8(3), 470. https://doi.org/10.26418/jp.v8i3.56656
Google. (n.d.). Google Colaboratory notebook. https://colab.research.google.com/drive/1ETWilEnIu_vE5cx_S8AGZ8NV8tWQ7P_U
Handayani, D. N., & Qutub, S. (2025). Penerapan random forest untuk prediksi dan analisis kemiskinan. RIGGS: Journal of Artificial Intelligence & Digital Business, 4(2), 405–412. https://doi.org/10.31004/riggs.v4i2.512
Hazizah, N., & Feranika, A. (2025). Implementasi Algoritma Random Forest Dalam Klasifikasi Risiko Gagal Bayar Kartu Kredit Pada Nasabah Bank. Jurnal Manajemen Teknologi Dan Sistem Informasi (JMS), 5(1), 1050-1059. https://doi.org/10.33998/jms.2025.5.1.2384
Ichsan, M. (2025). Implementasi Machine Learning untuk Deteksi Penyakit pada Kucing Menggunakan Random Forest. Jurnal Informatika dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.8164
Ismail, D. H., & Nugroho, J. (2022). Gen Z, persaingan kerja, dan revolusi industri 4.0. Jurnal Ilmiah Ilmu Pendidikan, 5(4), 1300–1307.
Kaggle. (2025). Data science, AI & ML job salaries in 2025. https://www.kaggle.com/datasets/adilshamim8/salaries-for-data-science-jobs
Kusuma, A. P., Wibowo, A. S., Raynaldi, F., Maulana, F., Maulana, R., Putri, S. R. H., & Agustina, N. (2025). Analisis Sentimen Pada Aplikasi X Terhadap Kebijakan Tapera Menggunakan Algoritma Naïve Bayes Dan Decision Tree. Naratif: Jurnal Nasional Riset, Aplikasi dan Teknik Informatika, 7(1), 56-63. https://doi.org/10.53580/naratif.v7i1.306
Mediant, U. S. (2024). Peran AI bagi masa depan ekonomi digital Indonesia. Katadata. https://katadata.co.id/infografik/6719efcd959cf/peran-ai-bagi-masa-depan-ekonomi-digital-indonesia
Meilina, P. (2015). Penerapan data mining dengan metode klasifikasi menggunakan decision tree dan regresi. Jurnal Teknologi Universitas Muhammadiyah Jakarta, 7(1), 11–20. https://jurnal.ftumj.ac.id/index.php/jurtek
Panjaitan, C. H. P., Pangaribuan, L. J., & Cahyadi, C. I. (2022). Analisis metode K-nearest neighbor menggunakan RapidMiner untuk sistem rekomendasi tempat wisata Labuan Bajo. REMik: Riset dan E-Jurnal Manajemen Informatika Komputer, 6(3), 534–541. https://doi.org/10.33395/remik.v6i3.11701
Riansah, A., et al. (2025). Penerapan algoritma random forest dan decision tree. Jurnal Teknologi Informasi, 9(3), 4242–4249.
Rosen, K. H. (2008). Discrete mathematics and its applications (7th ed.). McGraw-Hill.
Sandag, G. A. (2020). Prediksi rating aplikasi App Store menggunakan algoritma random forest. Cogito Smart Journal, 6(2), 167–178. https://www.kaggle.com/
Sari, S. N., Annisa, P., Rahma, A. N. D., Ritonga, R. P., & Utomo, D. P. (2025). Teknik Data Mining Dengan Menggunakan Algoritma Decision Tree Untuk Mengetahui Pola Pemahaman Mahasiswa Pada Matakuliah Pemrograman. Bulletin of Information Technology (BIT), 6(4), 417-431. https://doi.org/10.47065/bit.v6i4.2339
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Dede Prabowo Wiguna, Lisda Juliana pangaribuan, Sakaria Efrata Ginting (Author)

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.










