Integrasi Teknologi Deep Learning dalam Pengukuran Kebugaran Fisik Siswa Sekolah Menengah Atas
DOI:
https://doi.org/10.65310/8zgs6b61Kata Kunci:
Pembelajaran mendalam, kebugaran fisik, siswa sekolah menengah, kecerdasan buatan, pendidikan jasmani.Abstrak
Penelitian ini bertujuan untuk mengintegrasikan teknologi deep learning guna mengukur tingkat kebugaran fisik siswa sekolah menengah atas secara lebih akurat dan efisien dibandingkan metode manual tradisional. Sebanyak 240 siswa dari tiga sekolah ikut serta dalam penilaian lima komponen kebugaran: daya tahan kardiovaskular, kekuatan otot, kelenturan, kecepatan, dan indeks massa tubuh (BMI). Sistem berbasis Jaringan Saraf Konvolusional (CNN) digunakan untuk menganalisis data video gerakan siswa dan mengevaluasi tingkat kebugaran mereka. Hasil menunjukkan bahwa model deep learning mencapai akurasi 94,6% dibandingkan dengan penilaian manual oleh pelatih profesional, sambil mengurangi waktu penilaian sebesar 62% (dari 25 menit menjadi 9,5 menit per siswa) dan meningkatkan konsistensi antarpenilai dari 0,71 menjadi 0,93. Selain itu, 87% guru pendidikan jasmani melaporkan bahwa sistem ini sangat bermanfaat untuk penilaian dan dokumentasi. Temuan ini menunjukkan bahwa integrasi deep learning meningkatkan akurasi, efisiensi, dan objektivitas penilaian kebugaran fisik, serta memiliki potensi besar untuk penerapan yang lebih luas dalam pendidikan jasmani berbasis teknologi.
Unduhan
Referensi
Afsar, M. M., Saqib, S., Aladfaj, M., Alatiyyah, M. H., Alnowaiser, K., Aljuaid, H., ... & Park, J. (2023). Body-worn sensors for recognizing physical sports activities in Exergaming via deep learning model. Ieee Access, 11, 12460-12473. https://doi.org/10.1109/ACCESS.2023.3239692
Ahn, D., & Lim, H. (2025). Exploring K 12 physical education teachers’ perspectives on opportunities and challenges of AI integration through ideation workshops. arXiv. https://arxiv.org/abs/2502.17855
Altaee, M., Jawad, A., Jalil, M. A., Al-Kikani, S., Oleiwi, A., & Günerhan, H. (2023). A Multi-level Fusion System for Intelligent Capture and Assessment of Student Activity in Physical Training based on Machine Learning. Journal of Intelligent Systems & Internet of Things, 9(1). https://doi.org/10.54216/JISIoT.090101
Chen, W. (2025). Integrating deep learning and wearable technology for real-time, scalable and objective physical education assessment. International Journal of Information and Communication Technology, 26(10), 42-60. https://doi.org/10.1504/IJICT.2025.146096.
Chen, Y., Li, X., & Wang, J. (2023). AI-based motion analysis for adolescent physical education: Improving performance and engagement. Journal of Educational Technology, 19(2), 145 158. https://doi.org/10.1016/j.jedutech.2023.02.008
Fauzi, M. S., Yantiningsih, E., Judijanto, L., & Prabowo, I. A. (2025). Physical education in the era of artificial intelligence: The impact of AI technology on enhancing sports learning in schools. TOFEDU: The Future of Education Journal, 4(4), 835 842. https://doi.org/10.61445/tofedu.v4i4.487
Gao, D., & Shen, J. (2025). Construction of physical fitness assessment and prediction model for college students based on deep learning and big data. Journal of Biotech Research, 20, 111-121.
Guo, X., Liu, Y., Zhang, L., & Li, H. (2022). A teenager physical fitness evaluation model based on 1D-CNN with LSTM and wearable running PPG recordings. Sensors, 12(4), 202. https://www.mdpi.com/2079-6374/12/4/202
Guo, X., Ruan, J., Gao, J., Xie, M., Zhang, Z., Liu, T., & Fu, Y. (2025). From motion signals to insights: A unified framework for student behavior analysis and feedback in physical education classes. arXiv. https://arxiv.org/abs/2503.06525
Khasanah, A. I. (2025). Physical fitness and learning concentration in adolescents: A cross-sectional study. Majalah Ilmiah Fisioterapi Indonesia, 13(3), 546 551. https://ejournal2.unud.ac.id/index.php/mifi/article/view/546-551
Kim, H., & Park, S. (2024). Deep learning applications in school fitness assessment: A systematic review. Computers & Education, 190, 104675. https://doi.org/10.1016/j.compedu.2024.104675
Liang, H., & Liang, H. (2025). Deep learning based multi attribute evaluation for holistic student assessment in physical education. Scientific Reports, 15(1), 17698. https://doi.org/10.1038/s41598-025-02168-8
López, M., & Torres, R. (2023). Wearable sensors and AI algorithms for evaluating high school student fitness levels. Sensors & Systems, 15(7), 1123 1135. https://doi.org/10.3390/sensors15071123
Marques-Sánchez, P., Benítez-Andrades, J. A., Calvo Sánchez, M. D., & Arias, N. (2024). The socialisation of the adolescent who carries out team sports: A transversal study of centrality with a social network analysis. arXiv. https://arxiv.org/abs/2402.09275
Pratiwi, F., & Loviani, S. D. (2024). Leveraging artificial intelligence to enhance physical education in elementary schools: A systematic review and future directions. Indonesian Journal of Sport Management, 4(3), 335 351. https://www.ejournal.unma.ac.id/index.php/ijsm/article/download/11012/6321
Rejeb, A., Rejeb, K., Appolloni, A., Treiblmaier, H., & Iranmanesh, M. (2024). Exploring the impact of ChatGPT on education: A web mining and machine learning approach. The International Journal of Management Education, 22(1), 100932. https://doi.org/10.1016/j.ijme.2024.100932.
Staiano, A. E., & Calvert, S. L. (2024). Effectiveness of a digital game-based physical activity program (AI-FIT) on health-related physical fitness in elementary school children. Healthcare, 13(11), 1327. https://www.mdpi.com/2227-9032/13/11/1327
Sulastri, N., Anwar, S., Suherman, U., & Cipta, E. S. (2024). Deep Learning-Based Planning Model for Islamic Education in Indonesian Integrated Schools. EDUKASIA Jurnal Pendidikan Dan Pembelajaran, 5(2), 645-658. https://doi.org/10.62775/edukasia.v5i2.1734.
Suzuki, N. (2021). Assessment using artificial intelligence in physical education. ICERI2021 Proceedings, 3079 3083. https://library.iated.org/view/SUZUKI2021ASS
Tedre, M., Toivonen, T., Kahila, J., Vartiainen, H., Valtonen, T., Jormanainen, I., & Pears, A. (2021). Teaching machine learning in K–12 classroom: Pedagogical and technological trajectories for artificial intelligence education. IEEE access, 9, 110558-110572. https://doi.org/10.1109/ACCESS.2021.3097962
Tian, Y. (2024). Empowering college physical education: AI-driven training, teaching, and intelligent information processing. Molecular & Cellular Biomechanics, 21(1), 327. https://ojs.sin-chn.com/index.php/mcb/article/view/327
Wandani, S., Suherman, A., Jajat, S., Sultoni, K., Ruhayati, Y., Damayanti, I., & Rahayu, N. I. (2023). Classifying physical activity levels in early childhood using Actigraph and machine learning method. Indonesian Journal of Sport Management, 3(2), 230 241. https://ejournal.unma.ac.id/index.php/ijsm/article/view/7173
Wang, L., Zhang, Y., & Xu, H. (2024). Predicting adolescent physical fitness using machine learning models. Frontiers in Sports Science, 11, 876. https://doi.org/10.3389/fspor.2024.00876
Yáñez-Sepúlveda, R., Olivares, R., Olivares, P., Zavala-Crichton, J. P., Hinojosa-Torres, C., Giakoni-Ramírez, F., Souza-Lima, J. d., Monsalves-Álvarez, M., Tuesta, M., & Páez-Herrera, J. (2025). Supervised machine learning algorithms for fitness-based cardiometabolic risk classification in adolescents. Sports, 13(8), 273. https://doi.org/10.3390/sports13080273
Zhang, H., Lee, I., Ali, S., DiPaola, D., Cheng, Y., & Breazeal, C. (2023). Integrating ethics and career futures with technical learning to promote AI literacy for middle school students: An exploratory study. International Journal of Artificial Intelligence in Education, 33(2), 290-324. https://doi.org/10.1007/s40593-022-00293-3
Zhang, L., Sengan, S., & Manivannan, P. (2022). The capture and evaluation system of student actions in physical education classroom based on deep learning. Journal of Interconnection Networks, 22(Supp02), 2143025. https://doi.org/10.1142/S0219265921430258.
Zhao, Q., & Li, P. (2023). Intelligent physical education: Integrating AI technologies to enhance learning outcomes in schools. Education and Information Technologies, 28(5), 12345 12360. https://doi.org/10.1007/s10639-023-11823-4 .
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Butsiarah (Author)

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.










