Review of Membrane Technology Developments in Separating CO₂ from CH₄

Authors

  • Rafi Indratama Universitas Islam Negeri Jurai Siwo Lampung Author

DOI:

https://doi.org/10.65310/1y911w96

Keywords:

Membrane Technology, Carbon Dioxide Separation, Methane Purification, Gas Permeability, Gas Selectivity

Abstract

Global CO₂ emissions exceeding 30 billion tons annually significantly contribute to global warming, including in natural gas, biogas, and landfill gas streams containing CH₄. High CO₂ content lowers CH₄’s calorific value, requiring efficient separation technology. Gas membranes offer an energy-efficient, low-cost, and simple alternative to conventional methods. This study reviews advancements in CO₂/CH₄ separation membranes, focusing on material innovations and performance. A systematic literature review was conducted following PRISMA guidelines, covering international publications (2010–2025) with relevant keywords. Data were analyzed qualitatively and quantitatively by membrane type, material, separation mechanism, and performance parameters such as permeability (PCO₂) and CO₂/CH₄ selectivity. Results show a publication surge after 2015, driven by developments in high-free-volume polymers (PIMs), carbon molecular sieves (CMS), zeolite-based inorganic membranes, mixed-matrix membranes (MMMs), and 2D materials like graphene and MOFs. Some materials exceeded the Robeson limit, achieving PCO₂ in the tens of thousands of Barrer with selectivity >100. Remaining challenges include plasticization, long-term stability, production costs, and scalability.

Downloads

Download data is not yet available.

References

Adisasmito, S., Dharmastuti, S. A., Syauqi, A., Ashshiddiq, J. A., & Santoso, L. L. (2023). Transisi Energi dan Pengurangan Emisi Gas Karbon Dioksida. Surabaya: Pustaka Saga Jawadwipa.

Ahmad, M., & Nasution, D. P. (2018). Analisis Kualitatif Kemampuan Komunikasi Matematis Siswa Yang Diberi Pembelajaran Matematika Realistik. Jurnal Gantang, 3(2), 83-95.

Alvares, C., & Semino, R. (2025). MARTINI-based force fields for predicting gas separation performances of MOF/polymer composites. arXiv preprint arXiv:2508.04672. https://doi.org/10.48550/arXiv.2508.04672.

Caralin, I. S. (2020). Peningkatan Selektivitas Membran Polisulfon-Karbon Tertemplat Zeolit dengan Pelapisan TMOS untuk Pemisahan CO2/CH4 dan H2/CH4. Skripsi, Institut Teknologi Sepuluh Nopember.

Carrascal-Hernández, D. C., Grande-Tovar, C. D., Mendez-Lopez, M., Insuasty, D., García-Freites, S., Sanjuan, M., & Márquez, E. (2025). CO2 Capture: A Comprehensive Review And Bibliometric Analysis Of Scalable Materials And Sustainable Solutions. Molecules, 30(3), 563. https://doi.org/10.3390/molecules30030563.

ChandraAsri. (2025). “Net Zero Emissions: Solusi Global untuk Lestarikan Bumi”, tersedia di https://chandra-asri.com/id/blog/net-zero-emissions-adalah, diakses pada 12 Agustus 2025.

Comesaña-Gándara, B., Chen, J., Bezzu, C. G., Carta, M., Rose, I., Ferrari, M. C., ... & McKeown, N. B. (2019). Redefining the Robeson upper bounds for CO 2/CH 4 and CO 2/N 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 12(9), 2733-2740.

Elma, Muthia. (2023). Fundamental dan Aplikasi Membran Hollow Fiber untuk Pengolahan Air. Banjarmasin: Lambung Mangkurat University Press.

Iarikov, D. D., & Oyama, S. T. (2011). Review of CO2/CH4 Separation Membranes. Membrane science and technology (Vol. 14, pp. 91-115). Elsevier. http://dx.doi.org/10.1016/B978-0-444-53728-7.00005-7.

Iarikov, D. D., & Oyama, S. T. (2011). Review of CO2/CH4 separation membranes. In Membrane science and technology (Vol. 14, pp. 91-115). Elsevier. http://dx.doi.org/10.1016/B978-0-444-53728-7.00005-7.

IEA. (2018). “An Introduction to Biogas and Biomethane”, tersedia di https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane, diakses pada 12 Agustus 2025.

Jeon, Y. W., & Lee, D. H. (2015). Gas membranes for CO2/CH4 (biogas) separation: A review. Environmental Engineering Science, 32(2), 71-85. http://dx.doi.org/10.1089/ees.2014.0413.

Jonnalagedda, A., & Kuncharam, B. V. R. (2023). Investigation of ZIF‐8, amine‐modified ZIF‐8 and polysulfone based mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 140(45), e54650. https://doi.org/10.1002/app.54650.

Kentish, S. E., Scholes, C. A., & Stevens, G. W. (2008). Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, 1(1), 52-66. http://dx.doi.org/10.2174/1874478810801010052.

Khamaludin, et. al., (2022). Green Technology. Padang: Get Press Indonesia.

Li, S., Liu, Y., Wong, D. A., & Yang, J. (2021). Recent advances in polymer-inorganic mixed matrix membranes for CO2 separation. Polymers, 13(15), 2539. doi: 10.3390/polym13152539.

Liu, X., Ao, D., Ye, M., Wang, Z., Qiao, Z., & Zhao, S. (2025). Efficient CO2/CH4 separation achieved by metal–organic framework crystal‐glass composite membranes. AIChE Journal, https://doi.org/10.1002/aic.18883.

Madzarevic, Z. P., Seoane, B., Gascon, J., Hegde, M., & Dingemans, T. J. (2022). Non-linear high Tg polyimide-based membranes for separating CO2/CH4 gas mixtures. Polymer, 263. https://doi.org/10.1016/j.polymer.2022.125520.

Naseer, M. N., Zaidi, A. A., Dutta, K., Wahab, Y. A., Jaafar, J., Nusrat, R., ... & Kim, B. (2022). Past, Present And Future Of Materials’ Applications For CO2 Capture: A Bibliometric Analysis. Energy Reports, 8, 4252-4264. https://doi.org/10.1016/j.egyr.2022.02.301.

Nemestóthy, N., Bakonyi, P., Lajtai-Szabó, P., & Bélafi-Bakó, K. (2020). The Impact Of Various Natural Gas Contaminant Exposures On CO2/CH4 Separation By A Polyimide Membrane. Membranes, 10(11), 324. https://doi.org/10.3390/membranes10110324.

Nilamsari, D. N. (2024). Fabrikasi Membran Serat Berongga P84/PCs untuk Pemisahan Gas CO2/CH4 (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).

Pakdel, S., Erfan-Niya, H., & Azamat, J. (2022). CO2/CH4 mixed-gas separation through carbon nitride membrane: a molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129643. https://doi.org/10.1016/j.colsurfa.2022.129643.

Peng, X., Chen, L., You, L., Jin, Y., Zhang, C., Ren, S., ... & Gu, X. (2024). Improved Synthesis of Hollow Fiber SSZ‐13 Zeolite Membranes for High‐Pressure CO2/CH4 Separation. Angewandte Chemie International Edition, 63(31), https://doi.org/10.1002/anie.202405969.

Risnayanti, R. (2023). Pemanfaatan Hidroksiapatit Tulang Sapi Sebagai Biomaterial Tumpatan Komposit= Utilization of Ox Bone Hydroxyapatite as Composite Filling Biomaterial. Tesis, Universitas Hasanuddin.

Sholeha, N. A., Edi Wiraguna, S. P., Farobie, E. O., Melbi Mahardika, S. T., Jannah, D. M., Si, S. T., ... & Atmaja, R. N (2024). Nanoteknologi Dalam Perspektif Pertanian Berkelanjutan: Inovasi Terkini Untuk Pertumbuhan Dan Proteksi Tanaman. Indramayu: Adab Indonesia.

Taherizadeh, A., Simon, A., Richter, H., Stelter, M., & Voigt, I. (2024). A Study of the Influence of Synthesis Parameters on the Preparation of High Performance SSZ-13 Membranes. Applied Sciences, 14(17), 7836. https://doi.org/10.3390/app14177836.

Triandini, E., Jayanatha, S., Indrawan, A., Putra, G. W., & Iswara, B. (2019). Metode systematic literature review untuk identifikasi platform dan metode pengembangan sistem informasi di Indonesia. Indonesian Journal of Information Systems, 1(2), 63-77.

Wang, Q., Huang, F., Cornelius, C. J., & Fan, Y. (2021). Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations. Journal of Membrane Science, 621,. https://doi.org/10.1016/j.memsci.2020.118785.

Xing, Y., Ma, Z., Su, W., Wang, Q., Wang, X., & Zhang, H. (2020). Analysis Of Research Status Of CO2 Conversion Technology Based On Bibliometrics. Catalysts, 10(4), 370. https://doi.org/10.3390/catal10040370.

Xu, J., Wu, H., Wang, Z., Qiao, Z., Zhao, S., & Wang, J. (2018). Recent advances on the membrane processes for CO2 separation. Chinese Journal of Chemical Engineering, 26(11), 2280-2291. https://doi.org/10.1016/j.cjche.2018.08.020.

Zakariya, S., Yeong, Y. F., Jusoh, N., & Tan, L. S. (2022). Performance of Multilayer Composite Hollow Membrane in Separation of CO2 From CH4 in Mixed Gas Conditions. Polymers, 14(7), 1480. https://doi.org/10.3390/polym14071480.

Zhang, C., Sheng, M., Hu, Y., Yuan, Y., Kang, Y., Sun, X., ... & Wang, Z. (2021). Efficient facilitated transport polymer membrane for CO2/CH4 separation from oilfield associated gas. Membranes, 11(2), 118.. https://doi.org/10.3390/membranes11020118.

Published

2025-06-12

How to Cite

Review of Membrane Technology Developments in Separating CO₂ from CH₄. (2025). Journal of Engineering and Applied Technology, 1(1), 40-47. https://doi.org/10.65310/1y911w96