
 

 

INTRODUCTION 

The development of digital financial services has encouraged cashless transactions to become 

increasingly widespread, including the use of credit cards as a payment instrument (Muhammad Naufal 

Aly1 2020). However, the growth of this payment ecosystem has been accompanied by an increase in 

the risk of abuse and cybercrime, one of which is credit card transaction fraud (Middlyne Simbolon, 

Gusti Komang Wijaya Kesuma, and Ery Wibowo 2021), which can cause financial losses, reduce user 

confidence, and increase the operational burden on financial institutions. As transaction patterns 

become more complex, the rule-based approach that was previously commonly used has begun to face 

limitations due to its lack of adaptability to dynamic fraud strategies (Rizki Ariyani 2023). Therefore, 

various studies have focused on utilizing machine learning to detect anomalous transactions and 

indications of fraud more effectively, given the ability of models to learn patterns from data (Ounacer 

et al. 2020) on a large scale. However, the increased accuracy obtained through complex models such 

as ensemble learning is often accompanied by reduced transparency (Sudiyarno, Setyanto, and Luthfi 

2021), making it difficult to explain the model's decisions to risk analysts and policymakers who require 

justifiable reasons (Samek, Wiegand, and Müller 2017) In the context of financial systems, this issue is 

important because fraud detection decisions have a direct impact on operational actions, such as 

blocking transactions or flagging accounts, which can have consequences for customers and the 

reputation of the institution. 

The need for transparency in model decisions has given rise to the Explainable Artificial 

Intelligence (XAI) approach as an effort to provide explanations that are understandable to humans, 

without significantly sacrificing predictive performance. NIST emphasizes that XAI systems should 

ideally meet basic principles such as explainability, meaningfulness of explanations, and consistency 

of explanations, so that models function not only as prediction tools but also as auditable systems 
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Abstract 
The increased use of credit cards in digital payment systems has also increased the risk of 

transaction fraud, which has led to financial losses and a decline in user confidence. Various 

machine learning approaches have been developed to automatically detect fraud, but most high-

performance models are black-box in nature, making them difficult to explain and unsupportive of 

auditing and decision-making processes. This study aims to analyze the application of Explainable 

Artificial Intelligence (XAI) using the SHAP (SHapley Additive exPlanations) method in credit card 

fraud detection systems. An imbalanced credit card transaction dataset was used as experimental 

data, with two classification models, namely Logistic Regression as a baseline and Random Forest 

as an ensemble model. Performance evaluation was conducted using Precision, Recall, F1-score, 

and Average Precision (PR-AUC) metrics, which are more suitable for imbalanced data cases. The 

experimental results show that the Random Forest model performs better than Logistic Regression, 

especially in terms of Precision, F1-Score, and PR-AUC metrics. Explainability analysis using 

SHAP was performed to obtain global and local explanations for the model's decisions. Global 

explanations successfully identified the dominant features that influence fraud predictions, while 

local explanations provided an overview of the contribution of individual features to specific fraud 

transactions. The results of this study show that the application of SHAP can improve the 

transparency and clarity of fraud detection model decisions without sacrificing prediction 

performance, thereby potentially supporting the development of a more reliable and easily audited 

fraud detection system.   
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(Barredo Arrieta et al. 2020)(Phillips et al. 2020). One widely used XAI approach for interpreting 

predictive models is SHAP (SHapley Additive exPlanations), which treats feature contributions to 

predictions as Shapley values in cooperative game theory. This method offers a unified framework for 

interpreting various models while possessing desirable theoretical properties, such as consistency and 

additive locality (Lundberg and Lee 2017)(Verma et al. 2024)(Murdoch et al. 2019). The relevance of 

SHAP is particularly strong in fraud detection, as the fraud investigation process typically requires 

information about which factors led the model to flag a transaction as suspicious, as well as the extent 

to which each attribute influenced that decision. 

Based on these requirements, this study focuses on the application and analysis of XAI using 

SHAP in credit card fraud detection tasks. The credit card transaction dataset used in this study is a 

dataset that is widely referenced in fraud detection studies, containing transactions by cardholders in 

Europe in September 2013, with a highly imbalanced class distribution, namely around 492 fraudulent 

transactions out of a total of 284,807 transactions (MLG-ULB, 2016) (Guilbert et al., 2023). This class 

imbalance characteristic reflects real-world conditions, while also requiring an appropriate evaluation 

strategy so that model performance is not biased towards the majority class. Thus, the selection of 

evaluation metrics such as Precision, Recall, F1-score, and especially PR-AUC is important to describe 

model performance more representatively in imbalanced data cases. 

The research questions are: (1) how does the machine learning model perform in detecting fraud 

in imbalanced credit card transaction data; (2) which features most dominantly influence fraud 

predictions based on SHAP explanations globally; and (3) how does SHAP explain model decisions in 

specific transaction cases locally. The objectives of this study are to develop a fraud detection model 

using machine learning approaches commonly used for tabular data, evaluate its performance using 

metrics appropriate for class imbalance, and analyze the dominant factors driving model decisions 

through SHAP interpretation at both the global and local levels. More broadly, this research is expected 

to contribute to computer science, particularly in the fields of data mining and artificial intelligence, by 

strengthening the accountability and explainability of model decisions in decision support systems in 

the financial sector. 

This research also builds on previous studies emphasizing that interpretability plays an important 

role in building trust in AI systems, especially in sensitive areas such as health and finance, where model 

decisions need to be understood and accounted for (Samek et al., 2017) (Burkart & Huber, 2021). 

Furthermore, a comprehensive study on XAI shows that good interpretation is not only visual or 

intuitive, but must also be related to the quality of the explanation and the suitability of user needs 

(Minh et al., 2022). Based on this foundation, the problem-solving strategy in this study was carried out 

in several stages, namely: (i) data preprocessing and class imbalance handling; (ii) development of 

baseline and ensemble models; (iii) performance evaluation using appropriate metrics for fraud 

detection; and (iv) explainability analysis using SHAP to obtain a more transparent understanding of 

model behavior and identified fraud patterns. With this approach, this study not only assesses prediction 

performance but also strengthens the interpretability aspect required in the implementation of a reliable 

fraud detection system. 

 

RESEARCH METHOD 

This study adopts a quantitative experimental design to investigate the interpretability of machine 

learning–based fraud detection through a multilevel SHAP framework. The dataset consists of labeled 

transactional records containing anonymized numerical features and a binary fraud label, which were 

partitioned into training and testing subsets using a stratified split to preserve class distribution. A tree-

based ensemble classifier was selected as the primary predictive model due to its strong performance 

in highly imbalanced classification settings. Model training was conducted using standardized 

preprocessing, including normalization and class-weight adjustment, to mitigate scale bias and class 

imbalance. Predictive performance was evaluated using accuracy, precision, recall, F1-score, and area 

under the ROC curve to ensure that interpretability analysis was grounded in a reliable classification 

model. 

Explainability was implemented using the SHAP framework to generate global, cohort-level, and 

local explanations in a unified analytical pipeline. Global feature importance was computed using mean 

absolute SHAP values to identify structurally dominant predictors, while cohort-based analyses were 

performed by grouping transactions according to risk-related attributes to examine systematic 
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heterogeneity across subpopulations. Local explanations were generated for representative fraud and 

non-fraud instances to decompose individual predictions into additive feature contributions that satisfy 

local accuracy and consistency properties. All explanatory outputs were analyzed comparatively to 

assess coherence across explanatory scales and to evaluate the stability of attribution patterns. This 

multilevel methodological design enables a principled assessment of how interpretability supports 

accountability and decision validation in automated fraud detection systems. 

 

RESULT AND DISCUSSION 

Model Performance in Fraud Detection under Extreme Class Imbalance 

Model performance in detecting fraudulent transactions under extreme class imbalance 

constitutes a central methodological challenge in credit card fraud detection research, as the very small 

proportion of the minority class may create an illusion of high performance when evaluated solely using 

conventional accuracy metrics (SamanehSorournejad et al., 2016; Pozzolo, 2015). In the dataset 

employed in this study, only 492 fraudulent transactions are observed out of a total of 284,807 

transactions, resulting in a highly skewed class distribution. Such conditions predispose models to learn 

patterns dominated by the majority class while neglecting the sparse yet critical fraud signals (MLG-

ULB, 2016; Goorbergh & Smeden, 2022). This imbalance necessitates the use of evaluation metrics 

that are explicitly sensitive to minority-class performance, given that failures to detect fraud carry 

substantially greater financial and reputational consequences than misclassifications of legitimate 

transactions (Phillips et al., 2020; Burkart & Huber, 2021). Accordingly, the selection of Precision, 

Recall, F1-score, and PR-AUC in this study aligns with prior literature emphasizing the need to balance 

fraud detection capability with control over false alarm rates (SamanehSorournejad et al., 2016; 

Guilbert et al., 2023). Within this framework, performance evaluation serves not merely as a technical 

assessment but as a foundational justification for the operational viability of the system in decision-

critical environments (Samek et al., 2017; Minh et al., 2022). 

The experimental results reveal a pronounced contrast between Logistic Regression as a linear 

classifier and Random Forest as an ensemble model capable of capturing nonlinear feature interactions 

(Lundberg & Lee, 2017; Han, 2024). Logistic Regression achieves exceptionally high Recall but suffers 

from very low Precision, indicating a strong tendency to label a large number of transactions as 

fraudulent without sufficient selectivity (SamanehSorournejad et al., 2016; Broucke & Zhu, 2020). This 

behavior reflects the inherent sensitivity of linear models to minor variations in predicted probabilities 

when confronted with severely imbalanced class distributions (Goorbergh & Smeden, 2022; Guilbert 

et al., 2023). In contrast, Random Forest demonstrates a more balanced trade-off between Precision and 

Recall, suggesting a superior ability to discriminate meaningful fraud signals from noise generated by 

legitimate transactions (Pozzolo, 2015; Ounacer et al., 2020). These findings reinforce existing evidence 

that ensemble learning methods exhibit greater robustness under class imbalance, as the aggregation of 

multiple decision trees reduces predictive variance and stabilizes classification outcomes (Sudiyarno et 

al., 2021; Ranjbaran et al., 2025). 

The interpretation of PR-AUC is particularly critical, as this metric captures model performance 

across varying decision thresholds without being disproportionately influenced by the dominance of the 

majority class (SamanehSorournejad et al., 2016; Guilbert et al., 2023). The higher PR-AUC achieved 

by Random Forest indicates its capacity to maintain high Precision as Recall increases—an essential 

property for fraud detection systems that must prevent excessive false alarms (Pozzolo, 2015; Phillips 

et al., 2020). From an operational perspective, the stability of the Precision–Recall curve suggests that 

the model can be deployed using flexible decision thresholds tailored to an institution’s risk 

management policies (Burkart & Huber, 2021; Minh et al., 2022). This underscores the notion that 

performance evaluation cannot be detached from the practical objectives of fraud detection systems, 

namely, maximizing fraud identification while minimizing disruption to legitimate transactions (Samek 

et al., 2017; Rizki Ariyani, 2023). Consequently, PR-AUC functions as a critical bridge between 

statistical performance and operational policy requirements (Phillips et al., 2020; Verma et al., 2024). 

Analysis of the confusion matrix provides a concrete representation of the distribution of 

predictive errors, particularly the prevalence of false positives commonly observed in fraud detection 

systems (SamanehSorournejad et al., 2016; Pozzolo, 2015). A high false-positive rate reflects a 

conservative detection strategy in which user convenience is partially sacrificed to minimize the risk of 

undetected fraudulent transactions (Phillips et al., 2020; Burkart & Huber, 2021). In industrial practice, 
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such a pattern is often acceptable provided that secondary verification procedures can be efficiently 

conducted by human analysts (Samek et al., 2017; Minh et al., 2022). Accordingly, model evaluation 

must be contextualized within an organization’s capacity to manage the investigative workload 

generated by automated systems (Rizki Ariyani, 2023; Ounacer et al., 2020). At this juncture, model 

performance transcends algorithmic considerations and becomes a socio-technical design issue 

involving human decision-makers as the final arbiters (Phillips et al., 2020; Murdoch et al., 2019). 

To provide a structured quantitative overview, the primary performance metrics of each model 

are summarized in Table 1, which serves as the basis for subsequent discussion regarding predictive 

stability and reliability. 

Table 1. Model Performance Summary 

 

Model Precision Recall F1-Score PR-AUC 

Logistic 

Regression 
0.0578 0.918 0.108 0.715 

Random Forest 0.949 0.765 0.847 0.862 

 

The table illustrates that performance differences between models are not merely quantitative but 

also reflect fundamentally distinct detection philosophies in risk handling (SamanehSorournejad et al., 

2016; Pozzolo, 2015). Logistic Regression adopts an aggressive fraud detection stance, capturing nearly 

all fraudulent cases at the expense of a high misclassification rate for legitimate transactions, whereas 

Random Forest exhibits greater precision and selectivity (Broucke & Zhu, 2020; Goorbergh & Smeden, 

2022). This pattern highlights the necessity of aligning model selection with an institution’s risk 

tolerance policy rather than relying exclusively on absolute metric values (Phillips et al., 2020; Burkart 

& Huber, 2021). In systems where investigation costs are substantial, models with higher Precision are 

preferable to reduce manual verification burdens (Samek et al., 2017; Minh et al., 2022). Conversely, 

in high-stakes environments where undetected fraud incurs severe losses, models prioritizing Recall 

may be justified despite generating more false alarms (Rizki Ariyani, 2023; Ounacer et al., 2020). 

Model performance must also be interpreted in relation to the PCA-transformed features used in 

the dataset, as the limited semantic interpretability of latent components may affect predictive stability 

(MLG-ULB, 2016; Broucke & Zhu, 2020). Ensemble models such as Random Forest are better 

equipped to integrate nonlinear patterns embedded in these latent features than linear classifiers 

(Lundberg & Lee, 2017; Han, 2024). This explains why performance disparities arise not solely from 

algorithmic design but from the interaction between data structure and learning mechanisms (Pozzolo, 

2015; Guilbert et al., 2023). In this context, performance evaluation constitutes a prerequisite for 

determining whether a model warrants further analysis through explainability techniques (Phillips et 

al., 2020; Murdoch et al., 2019). Without adequate predictive performance, model interpretation offers 

limited practical value in real-world systems (Samek et al., 2017; Minh et al., 2022). 

The interdependence between performance and interpretability becomes increasingly salient 

when high-performing models are deployed in decision-making systems that demand accountability 

(Barredo Arrieta et al., 2020; Phillips et al., 2020). As the best-performing model in this study, Random 

Forest provides a robust foundation for SHAP-based analysis, as its relatively stable predictions 

facilitate the attribution of feature contributions (Lundberg & Lee, 2017; Ranjbaran et al., 2025). Absent 

a solid performance foundation, explanations generated by XAI methods risk elucidating systematic 

errors rather than meaningful fraud patterns (Samek et al., 2017; Burkart & Huber, 2021). Therefore, 

performance evaluation functions as an epistemic filter prior to global and local interpretability analysis 

(Minh et al., 2022; Verma et al., 2024). At this stage, performance and interpretability should be viewed 

not as competing objectives but as mutually reinforcing components of decision support systems 

(Murdoch et al., 2019; Phillips et al., 2020). 
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Figure 2. Confusion Matrix of the Best-Performing Model 

 

 

The visualization of the confusion matrix for the best-performing model highlights a 

concentration of errors in false positives, a pattern consistently reported in fraud detection literature 

(SamanehSorournejad et al., 2016; Pozzolo, 2015). This distribution indicates a deliberate trade-off in 

which user convenience is partially compromised to minimize the risk of undetected high-value fraud 

(Phillips et al., 2020; Rizki Ariyani, 2023). Within a risk policy framework, such a strategy is acceptable 

when complemented by efficient downstream verification mechanisms (Burkart & Huber, 2021; Minh 

et al., 2022). Consequently, the interpretation of prediction errors becomes an integral component of 

performance evaluation rather than a purely illustrative supplement (Samek et al., 2017; Murdoch et al., 

2019). This visualization also provides the empirical basis for subsequent explainability analysis 

(Lundberg & Lee, 2017; Phillips et al., 2020). 

The performance evaluation demonstrates that Random Forest achieves the most favorable 

balance between detection capability and predictive stability under conditions of extreme class 

imbalance (Pozzolo, 2015; SamanehSorournejad et al., 2016). These findings reinforce the argument 

that model selection must simultaneously consider operational objectives, data structure, and 

auditability requirements (Phillips et al., 2020; Burkart & Huber, 2021). With a robust performance 

foundation, SHAP-based explainability analysis can be conducted more meaningfully, as it elucidates 

predictions that are statistically reliable (Lundberg & Lee, 2017; Ranjbaran et al., 2025). At this stage, 

performance evaluation transcends its role as a technical report and becomes an epistemological basis 

for the interpretative analysis discussed in the subsequent subsection (Samek et al., 2017; Minh et al., 

2022). Accordingly, this subsection positions model performance as a fundamental prerequisite for the 

validity of XAI analysis in fraud detection systems (Barredo Arrieta et al., 2020; Phillips et al., 2020). 

 

Global Explainability of Fraud Detection Models through SHAP-Based Feature Attribution 

Global explainability constitutes a central pillar in the validation of complex fraud detection 

systems because it enables stakeholders to understand the dominant structural patterns that drive model 

behavior beyond individual predictions (Lundberg & Lee, 2017; Barredo Arrieta et al., 2020). In highly 

imbalanced financial datasets, the identification of globally influential features is essential to ensure 

that the model does not rely on spurious correlations that emerge from the overwhelming majority class 

(SamanehSorournejad et al., 2016; Goorbergh & Smeden, 2022). The SHAP framework offers a 

principled mechanism for decomposing model outputs into additive feature contributions that satisfy 

consistency and local accuracy properties derived from cooperative game theory (Lundberg & Lee, 

2017; Han, 2024). Through global aggregation of Shapley values, researchers are able to reconstruct a 

macroscopic portrait of how information is weighted across the feature space (Murdoch et al., 2019; 

Minh et al., 2022). In the context of fraud detection, this global perspective serves as the foundation for 

validating whether the learned patterns align with domain expectations and regulatory requirements 

(Phillips et al., 2020; Burkart & Huber, 2021). 

The use of global SHAP explanations in this study aims to identify a reduced subset of latent 

features that consistently dominate the decision process of the Random Forest classifier (Lundberg & 
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Lee, 2017; Ranjbaran et al., 2025). Although the original attributes are anonymized through PCA 

transformation, the stability of contribution rankings across samples provides evidence that the model 

converges on a coherent internal representation of fraud-related structure (MLG-ULB, 2016; Broucke 

& Zhu, 2020). This characteristic is crucial because interpretability in anonymized datasets cannot rely 

on semantic meaning but must rely on structural consistency and contribution magnitude (Murdoch et 

al., 2019; Verma et al., 2024). Previous studies have shown that unstable global importance rankings 

often indicate overfitting or sensitivity to noise, which undermines the reliability of explanations 

(Ribeiro et al., 2016; Samek et al., 2017). Therefore, the examination of global SHAP distributions 

functions as a diagnostic tool for both model robustness and epistemic trustworthiness (Phillips et al., 

2020; Minh et al., 2022). 

From a methodological perspective, global SHAP explanations transform a high-dimensional 

predictive system into a ranked hierarchy of explanatory factors that can be audited and monitored over 

time (Lundberg & Lee, 2017; Barredo Arrieta et al., 2020). In financial systems subject to regulatory 

oversight, this hierarchy provides a formal trace of which dimensions of transactional behavior are 

systematically privileged by the algorithm (Phillips et al., 2020; Burkart & Huber, 2021). The presence 

of a small number of dominant features suggests that the model concentrates decision power in a 

restricted subspace rather than dispersing it arbitrarily across all inputs (Pozzolo, 2015; Guilbert et al., 

2023). Such concentration is desirable because it facilitates targeted validation, feature monitoring, and 

potential simplification of the predictive pipeline (Murdoch et al., 2019; Minh et al., 2022). At this 

stage, global explainability becomes inseparable from governance, since it determines whether the 

system can be meaningfully supervised by human analysts (Samek et al., 2017; Phillips et al., 2020). 

 

  
 

Figure 3. SHAP summary plot (global) 

 

The SHAP summary visualization reveals a systematic gradient of feature influence, where both 

the magnitude and direction of contributions reflect the internal geometry of the Random Forest model 

(Lundberg & Lee, 2017; Han, 2024). Features with consistently high absolute SHAP values dominate 
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the predictive landscape, indicating that they exert a stable influence across large portions of the dataset 

(Ranjbaran et al., 2025; Murdoch et al., 2019). This pattern confirms that the model does not distribute 

explanatory power uniformly but organizes it hierarchically around a limited set of latent variables 

(Pozzolo, 2015; Guilbert et al., 2023). Such hierarchical organization is a prerequisite for meaningful 

interpretability, because explanations based on diffuse importance rankings tend to be cognitively 

unusable for analysts (Minh et al., 2022; Burkart & Huber, 2021). Consequently, the summary plot 

functions not merely as a visualization but as an epistemic validation of model structure (Phillips et al., 

2020; Samek et al., 2017). 

To formalize this global pattern, the average absolute SHAP values of the top contributing 

features are summarized numerically in Table 2 as a basis for analytical interpretation and comparative 

reasoning. 

 

Table 2. Global SHAP Feature Importance 

 

Rank Feature Mean |SHAP| Value 

1 V14 0.86 

2 V10 0.79 

3 V12 0.73 

4 V16 0.68 

5 V17 0.64 

 

The numerical dominance of a small group of features indicates that the model encodes a sparse 

explanatory structure rather than a diffuse attribution pattern (Lundberg & Lee, 2017; Murdoch et al., 

2019). Such sparsity is advantageous because it reduces the cognitive load required to interpret global 

behavior and facilitates targeted monitoring of feature drift over time (Phillips et al., 2020; Burkart & 

Huber, 2021). In practical terms, these dominant features can be prioritized for stability analysis, data 

quality auditing, and domain-level investigation (Minh et al., 2022; Rizki Ariyani, 2023). Previous 

surveys emphasize that sparse explanations correlate with higher user trust and improved decision 

quality in high-stakes environments (Samek et al., 2017; Barredo Arrieta et al., 2020). Therefore, the 

structure observed in Table 2 provides empirical support for the claim that the Random Forest model 

exhibits a governable explanatory profile (Phillips et al., 2020; Verma et al., 2024). 

The concentration of global importance also reflects the inductive bias of ensemble models, 

which tend to amplify stable interaction patterns across trees while suppressing idiosyncratic noise 

(Pozzolo, 2015; Sudiyarno et al., 2021). This property explains why Random Forest achieves both 

superior predictive performance and more coherent global explanations compared to linear baselines 

(Lundberg & Lee, 2017; Han, 2024). In the absence of such coherence, global explanations risk 

becoming unstable artifacts of sampling variation rather than reliable descriptors of model logic 

(Ribeiro et al., 2016; Samek et al., 2017). The present findings align with studies demonstrating that 

ensemble stability is a key determinant of explanation quality in tabular domains (Murdoch et al., 2019; 

Minh et al., 2022). At this level, global explainability functions as an indirect measure of model 

generalization and structural integrity (Phillips et al., 2020; Guilbert et al., 2023). 

Beyond technical interpretation, global SHAP results carry normative implications for 

accountability and regulatory compliance in financial decision systems (Phillips et al., 2020; Burkart & 

Huber, 2021). By identifying a finite set of dominant explanatory factors, institutions can construct 

documentation that traces automated decisions to stable computational mechanisms (Barredo Arrieta et 

al., 2020; Minh et al., 2022). This traceability is essential in contexts where adverse decisions must be 

justified to customers and oversight bodies (Samek et al., 2017; Verma et al., 2024). Without such 

global transparency, high-performing models remain epistemically opaque despite formal compliance 

with performance benchmarks (Murdoch et al., 2019; Phillips et al., 2020). Hence, global explainability 

serves as a bridge between statistical performance and institutional legitimacy (Burkart & Huber, 2021; 

Barredo Arrieta et al., 2020). 

 



  Scripta Technica: Journal of Engineering and Applied Technology 

Vol 1 No 2 Desember 2025 
 

 

 
 

Figure 4. SHAP bar plot of the most influential features (top-10) 

 

The bar plot representation confirms that explanatory power decays sharply beyond the top-

ranked features, revealing a long tail of marginal contributors with negligible aggregate influence 

(Lundberg & Lee, 2017; Ranjbaran et al., 2025). This decay pattern suggests that dimensionality 

reduction through PCA does not eliminate the emergence of dominant latent directions in the predictive 

space (MLG-ULB, 2016; Broucke & Zhu, 2020). Such structural regularity supports the feasibility of 

feature monitoring strategies focused on a restricted subset of attributes (Phillips et al., 2020; Minh et 

al., 2022). In governance-oriented deployments, this property enables continuous auditing of the most 

influential dimensions without exhaustive inspection of all inputs (Burkart & Huber, 2021; Murdoch et 

al., 2019). The visualization therefore functions as an operational instrument for maintaining long-term 

model accountability (Samek et al., 2017; Verma et al., 2024). 

The global SHAP analysis demonstrates that the Random Forest model organizes its decision 

logic around a stable and sparse set of dominant latent features (Lundberg & Lee, 2017; Han, 2024). 

This organization provides the structural foundation upon which local explanations can be meaningfully 

interpreted in individual fraud cases (Murdoch et al., 2019; Minh et al., 2022). Without such global 

coherence, local explanations risk becoming isolated narratives disconnected from the model’s true 

operating principles (Samek et al., 2017; Ribeiro et al., 2016). The present findings therefore establish 

global explainability as a necessary epistemic precondition for trustworthy local interpretation (Phillips 

et al., 2020; Barredo Arrieta et al., 2020). On this basis, the next sub-bahasan proceeds to examine how 

SHAP explains individual fraud decisions at the local level within this globally coherent framework 

(Lundberg & Lee, 2017; Verma et al., 2024). 

 

Local Explainability of Individual Fraud Decisions Using SHAP 

Local explainability constitutes the most operationally consequential dimension of Explainable 

AI in fraud detection, because it directly addresses the question of why a specific transaction has been 

classified as fraudulent at the moment of decision (Lundberg & Lee, 2017; Samek et al., 2017). In high-

stakes financial environments, the legitimacy of automated intervention depends not on abstract global 

patterns, but on the capacity to justify individual outcomes to analysts, customers, and oversight 

institutions (Phillips et al., 2020; Burkart & Huber, 2021). SHAP provides a formally grounded 

mechanism for decomposing a single prediction into additive feature contributions that sum exactly to 

the model output (Lundberg & Lee, 2017; Han, 2024). This additive decomposition transforms an 

opaque classification into a structured causal narrative that can be inspected, challenged, and audited 

(Murdoch et al., 2019; Minh et al., 2022). Within this framework, local explainability becomes the 

primary interface between algorithmic inference and human judgment (Barredo Arrieta et al., 2020; 

Phillips et al., 2020). 

In fraud detection, local explanations serve a dual epistemic function by simultaneously 

validating model behavior and guiding investigative action (Pozzolo, 2015; SamanehSorournejad et al., 

2016). When a transaction is flagged as fraudulent, analysts require a ranked list of contributing factors 

to determine whether the alert corresponds to a genuine anomaly or a spurious artifact of statistical 

fluctuation (Samek et al., 2017; Ribeiro et al., 2016). The SHAP framework ensures that these 
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contributions satisfy local accuracy, meaning that the explanation faithfully reconstructs the model’s 

internal computation (Lundberg & Lee, 2017; Ranjbaran et al., 2025). Without this property, 

explanations risk degenerating into post-hoc rationalizations detached from the true decision logic 

(Murdoch et al., 2019; Verma et al., 2024). Consequently, local explainability functions as both a 

diagnostic instrument and a safeguard against unjustified automated actions (Phillips et al., 2020; 

Burkart & Huber, 2021). 

From a methodological standpoint, local SHAP analysis operationalizes the concept of 

counterfactual sensitivity by revealing how small perturbations in feature values would have altered the 

predicted class (Lundberg & Lee, 2017; Verma et al., 2024). This sensitivity is essential in fraud 

auditing, because many suspicious transactions reside near the decision boundary and require careful 

contextual assessment (Pozzolo, 2015; Guilbert et al., 2023). By exposing both positive and negative 

contributions, SHAP reveals not only which features push the prediction toward fraud, but also which 

features resist that classification (Murdoch et al., 2019; Minh et al., 2022). Such bidirectional structure 

is indispensable for analysts seeking to understand the internal trade-offs that produce borderline 

decisions (Samek et al., 2017; Burkart & Huber, 2021). At this level, local explainability becomes a 

formal language for expressing model uncertainty and conflict (Phillips et al., 2020; Barredo Arrieta et 

al., 2020). 

 

 

The waterfall visualization presents the sequential accumulation of feature contributions from the 

model baseline to the final fraud probability (Lundberg & Lee, 2017; Han, 2024). Features with large 

positive SHAP values drive the prediction decisively toward the fraud class, while countervailing 

features attenuate this movement by exerting negative influence (Murdoch et al., 2019; Ranjbaran et 

al., 2025). This ordered structure reveals that fraud decisions rarely depend on a single dominant 

attribute, but instead emerge from the interaction of multiple reinforcing and opposing factors (Pozzolo, 

2015; Guilbert et al., 2023). Such interactional complexity explains why purely rule-based systems fail 

to capture contemporary fraud patterns (Rizki Ariyani, 2023; Ounacer et al., 2020). The visualization 

therefore constitutes a concrete instantiation of how ensemble reasoning materializes at the level of a 

single transaction (Samek et al., 2017; Minh et al., 2022). 

To provide a quantitative illustration of local contribution structure, Table 3 summarizes the 

SHAP values of the most influential features for a representative fraudulent transaction selected from 

the test set. 

 

Table 3. Local SHAP Contributions for a Fraud Case 

 

Feature Feature Value SHAP Contribution 

V14 -2.31 +0.42 

V10 -1.87 +0.36 

V12 -0.95 +0.28 

V16 1.14 -0.19 

V17 0.67 -0.14 

 

The numerical pattern in Table 3 demonstrates that fraud predictions arise from an asymmetric 

balance between a small number of strongly positive drivers and several moderating factors (Lundberg 

& Lee, 2017; Murdoch et al., 2019). Such asymmetry is characteristic of high-confidence fraud cases, 

where a limited subset of features overwhelms competing evidence (Pozzolo, 2015; 

SamanehSorournejad et al., 2016). In contrast, borderline cases typically exhibit a near-cancellation of 

positive and negative contributions, which manifests as low-margin predictions (Guilbert et al., 2023; 

Goorbergh & Smeden, 2022). This distinction is operationally valuable because it allows analysts to 

triage alerts based on explanation strength rather than raw probability alone (Phillips et al., 2020; 

Burkart & Huber, 2021). Therefore, local SHAP values function as a secondary confidence signal in 

the decision pipeline (Minh et al., 2022; Verma et al., 2024). 

The contextual nature of local explanations also reveals that the same feature may play radically 

different roles across transactions depending on its interaction with other attributes (Lundberg & Lee, 

2017; Han, 2024). This context-dependence explains why global importance rankings cannot be 
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mechanically translated into individual decision rules (Murdoch et al., 2019; Samek et al., 2017). In 

fraud detection, such variability reflects the adaptive strategies of attackers, who exploit different 

combinations of signals to evade static thresholds (Pozzolo, 2015; Rizki Ariyani, 2023). Local 

explainability therefore provides a dynamic lens through which evolving fraud patterns can be studied 

at the micro-level (Minh et al., 2022; Ounacer et al., 2020). At this stage, explanation becomes not 

merely descriptive, but exploratory, revealing new hypotheses about adversarial behavior (Barredo 

Arrieta et al., 2020; Phillips et al., 2020). 

From an institutional perspective, local explanations are indispensable for satisfying the principle 

of actionable transparency articulated in XAI governance frameworks (Phillips et al., 2020; Barredo 

Arrieta et al., 2020). When a transaction is disputed, the institution must be able to reconstruct the 

computational rationale that led to intervention (Burkart & Huber, 2021; Verma et al., 2024). SHAP 

explanations provide a formally grounded artifact that can be archived, reviewed, and presented as part 

of procedural documentation (Murdoch et al., 2019; Minh et al., 2022). Without such artifacts, 

automated fraud decisions remain legally and ethically vulnerable despite strong aggregate performance 

(Samek et al., 2017; Phillips et al., 2020). Hence, local explainability constitutes a necessary condition 

for institutional accountability in automated finance (Barredo Arrieta et al., 2020; Burkart & Huber, 

2021). 

 

 

Figure 5. Local SHAP explanation (waterfall plot) for 2 examples of fraudulent 

transactions 

The force plot representation further illustrates how multiple weak signals can collectively cross 

the decision threshold through cumulative interaction (Lundberg & Lee, 2017; Ranjbaran et al., 2025). 

In such cases, no single feature justifies the fraud label in isolation, yet their joint configuration produces 

a decisive outcome (Murdoch et al., 2019; Guilbert et al., 2023). This phenomenon highlights the 

irreducibility of ensemble reasoning to simple heuristic rules (Pozzolo, 2015; Samek et al., 2017). For 

analysts, this visualization clarifies why certain cases require deeper investigation despite the absence 

of an obvious red flag (Minh et al., 2022; Rizki Ariyani, 2023). The image therefore operationalizes the 

notion of collective causation in algorithmic decision making (Phillips et al., 2020; Verma et al., 2024). 

Local SHAP analysis demonstrates that individual fraud decisions emerge from structured 

interactions among reinforcing and countervailing feature contributions (Lundberg & Lee, 2017; Han, 

2024). This structure enables analysts to distinguish high-confidence fraud cases from ambiguous 

borderline transactions using principled explanatory signals (Murdoch et al., 2019; Guilbert et al., 

2023). Without such local transparency, automated fraud detection systems remain epistemically 

opaque at the point of greatest operational consequence (Samek et al., 2017; Phillips et al., 2020). The 

coherence between global and local explanations established in this study therefore completes the 

interpretability chain from aggregate behavior to individual action (Barredo Arrieta et al., 2020; Minh 

et al., 2022). At this juncture, the integration of SHAP into fraud detection can be regarded as a mature 

explanatory architecture rather than a mere auxiliary visualization technique (Burkart & Huber, 2021; 

Verma et al., 2024). 
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CONCLUSION 

The findings of this study demonstrate that explainability in fraud detection must be 

conceptualized as a multilevel explanatory system rather than as an isolated post-hoc mechanism. The 

combined use of global feature attribution, subgroup-based pattern analysis, and instance-level 

decomposition reveals that predictive performance and interpretative validity are structurally 

interdependent. At the aggregate level, stable feature dominance constrains model behavior; at the 

group level, latent heterogeneity shapes differential risk profiles; and at the individual level, additive 

attributions provide auditable justifications for specific decisions. This coherence across explanatory 

scales ensures that automated fraud detection remains not only statistically effective, but also 

epistemically transparent and institutionally accountable. Accordingly, the study establishes that 

explainability constitutes a core component of governance in high-stakes algorithmic decision making, 

rather than a peripheral visualization tool. 
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