Application of Deep Learning for Product Review Sentiment Analysis in Predicting Market Demand Changes on E-Commerce Platforms
DOI:
https://doi.org/10.65310/v7bm9213Keywords:
Deep Learning, Sentiment Analysis, Product Reviews, Market Demand Prediction, E-Commerce.Abstract
The rapid development of e-commerce platforms has led to an increase in the volume of product reviews that reflect consumer perceptions and behavior, which can potentially be used as a basis for predicting changes in market demand. This study aims to examine the application of deep learning in product review sentiment analysis as a predictive instrument for market demand in e-commerce. The research method used is a literature study with a digital document analysis approach, through critical review of reputable journal articles, scientific proceedings, and research reports related to sentiment analysis, deep learning, and market demand prediction. The results and discussion show that deep learning-based sentiment analysis, particularly the transformer architecture, has a higher level of accuracy in understanding the context and emotions of review language compared to conventional methods, enabling it to represent consumer perceptions more comprehensively. Positive and negative sentiments are proven to correlate with increases and decreases in market demand, making them suitable for use as predictive variables. In conclusion, the integration of deep learning-based sentiment analysis in market demand prediction models can improve the accuracy of business decision-making and support e-commerce strategies that are adaptive to the dynamics of the digital market..
Downloads
References
Adrian, M. I., & Laksana, E. A. (2025). Optimalisasi Parameter Support Vector Machine dengan Algoritma PSO untuk Tugas Klasifikasi Sentimen Ulasan IMDb. Jurnal Algoritma, 22(1), 288-299. https://doi.org/10.33364/algoritma/v.22-1.2306.
Agustini, A., & Akib, A. (2025). Pemanfaatan Machine Learning Untuk Analisis Ulasan Pelanggan Dan Kinerja Penjualan Di Tokopedia. Akmen Jurnal Ilmiah, 22(1), 86-99. https://doi.org/10.37476/akmen.v22i1.5451.
Alam, W. Y., Junaidi, A., & Irnanda, Z. R. (2024). Peran Artificial Intelligence dalam Optimalisasi Customer Relationship Management (CRM) dan Pemasaran Digital. Economics and Digital Business Review, 5(2), 692-703.
Alfaridzi, D. D., Pudjiantoro, T. H., & Santikarama, I. (2025). Implementation of Aspect-Based Sentiment Analysis for Outdoor Gear Product Reviews on the Tokopedia E-Commerce Platform (Case Study: Eiger Adventure). Holistic Science, 5(2), 173-184. https://doi.org/10.56495/hs.v5i2.1230.
Apriana, D., & Yuliansyah, C. (2024). Mengoptimalkan Penjualan Online Melalui Teknik Data Mining (Studi Kasus E-Commerce). AL-MIKRAJ Jurnal Studi Islam Dan Humaniora (E-ISSN 2745-4584), 4(02), 514-527. https://doi.org/10.37680/almikraj.v4i02.4774.
Brightlocal. (2025). “Local Consumer Review Survey 2025”, tersedia di https://www.brightlocal.com/research/local-consumer-review-survey/, diakses pada 18 Desemeber 2025.
Deva Pratama, A. S., & Rijati, N. (2024). Pengenalan Emosi Ulasan Pelanggan E-Commerce Menggunakan Deep Learning Berbasis Transformer. Techno. com, 23(3). https://doi.org/10.62411/tc.v23i3.11090.
Fahnun, B. U., & Muhammad, S. A. S. (2025). Perbandingan Model Machine Learning Dalam Analisis Sentimen Ulasan Pengguna Aplikasi E-Commerce. Jurnal Ilmiah Teknologi dan Rekayasa, 30(1), 73-94. https://doi.org/10.35760/tr.2025.v30i1.13530.
Firanti, M. (2024). Penggunaan Algoritma Machine Learning dalam Prediksi Penjualan E-commerce. Circle Archive, 1(6).
Fuadi, W., & Afrillia, Y. (2025). Analisis Sentimen Review Aplikasi Stockbit Di Google Play Store Dan X (Twitter) Menggunakan Support Vector Machine: Sentiment Analysis Of Stockbit Application Reviews On Google Play Store And X (Twitter) Using Support Vector Machine. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 10(2), 1050-1062. https://doi.org/10.36341/rabit.v10i2.6446.
Harisatul, A., Saktia, A. D., & Adinta, S. T. (2023). Consumer Repurchase Intention Model In Lazada E-Commerce. Eksis: Jurnal Riset Ekonomi dan Bisnis, 18(2), 53-68. https://doi.org/10.26533/eksis.v18i2.1283.
Medium. (2025). “Consumer Sentiment Analysis 2025: Comprehensive Data from 10,000+ E-Commerce Stores”, tersedia di https://medium.com/%40robertrucker1190/consumer-sentiment-analysis-2025-comprehensive-data-from-10-000-e-commerce-stores-d0a83bb8f19e, diakses pada 18 Desember 2025.
Mubarok, D., Adjani, K., Hutama, B. D. R., Mutoffar, M. M., & Indrayani, R. (2025). Big Data Analytics dan Machine Learning untuk Memprediksi Perilaku Konsumen di E-commerce. Jurnal Informatika dan Rekayasa Elektronik, 8(1), 159-167. https://doi.org/10.36595/jire.v8i1.1561.
Nurjanah, S., & Apidana, Y. H. (2025). Analisis Sentimen TikTok untuk Mengevaluasi Reputasi Merek Pasca Kasus Overclaim: Studi pada Daviena Skincare. Technology and Informatics Insight Journal, 4(2), 74-91. https://doi.org/10.32639/h5x8te73.
Putri, C. A., Ginting, P., & Situmorang, S. H. (2021). E-service quality and relational marketing effect satisfaction with using mobile banking through user experience in Mandiri Syariah Bank KCP Medan Petisah. International journal of research and review, 8(06). https https://doi.org/10.47191/ijcsrr/V6-i10-17://doi.org/10.52403/ijrr.20210611.
Saputra, G. G., & Fadhilah, F. (2025). Peran Online Customer Experience Dalam Meningkatkan Customer Satisfaction Dan Repurchase Intention Pada Platform Digital. Ganaya: Jurnal Ilmu Sosial dan Humaniora, 8(2), 29-42. https://doi.org/10.37329/ganaya.v8i2.3950.
Setyawan, A. F., Ariyanto, A. D. P., Fikriah, F. K., & Nugraha, R. I. (2024). Analisis Sentimen Ulasan iPhone di Amazon Menggunakan Model Deep Learning BERT Berbasis Transformer. Elkom: Jurnal Elektronika dan Komputer, 17(2), 447-452. https://doi.org/10.51903/elkom.v17i2.2150.
Somad, A., & Majid, M. (2024). Kecerdasan Buatan Dalam Pemasaran: Tinjauan Sistematis Pemasaran Masa Depan. Jurnal Baruna Horizon, 7(2), 121-130. https://doi.org/10.52310/jbhorizon.v7i2.172.
Sondakh, D. E., Kom, S., Taju, S. W., Tene, M. G., & Pangaila, A. E. (2023). Sistem Analisis Sentimen Ulasan Aplikasi Belanja Online Menggunakan Metode Ensemble Learning. Cogito Smart Journal, 9(2), 280-291. https://doi.org/10.31154/cogito.v9i2.525.280-291.
Wafda, A. (2024). Integrasi Machine Learning dalam Ritel: Tinjauan Komprehensif tentang Prediksi Harga, Analisis Data Pelanggan, dan Pemanfaatan Media Sosial. Journal Artificial: Informatika dan Sistem Informasi, 2(2), 90-106. https://doi.org/10.54065/artificial.2.2.2024.543.
Wardani, S., Lubis, S. S., & Dewantoro, R. W. (2025). Analisis Big data untuk prediksi permintaan produk dalam E-commerce. Jurnal Penelitian Teknologi Informasi dan Sains, 3(1), 74-81. https://doi.org/10.54066/jptis.v3i1.3066.
Yessy Asri, S. T., Kuswardani, D., & Kom, M. (2024). Machine Learning & Deep Learning: Analisis Sentimen Menggunakan Ulasan Pengguna Aplikasi. Uwais Inspirasi indonesia..
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Harwati Harwati, Laili Afiatur Rosidah, Rika Rahmawati Milya (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.










